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Abstract
This paper presents the Euler–Lagrange equations and the transversality
conditions for fractional variational problems. The fractional derivatives are
defined in the sense of Riemann–Liouville and Caputo. The connection
between the transversality conditions and the natural boundary conditions
necessary to solve a fractional differential equation is examined. It is
demonstrated that fractional boundary conditions may be necessary even when
the problem is defined in terms of the Caputo derivative. Furthermore, both
fractional derivatives (the Riemann–Liouville and the Caputo) arise in the
formulations, even when the fractional variational problem is defined in terms
of one fractional derivative only. Examples are presented to demonstrate the
applications of the formulations.

PACS numbers: 45.10.Db, 02.30.Xx

1. Introduction

Integer variational calculus plays a significant role in many areas of science, engineering and
applied mathematics [1, 2]. In many applications, it is used to obtain the laws governing the
physics of systems and boundary/terminal conditions [3, 4]. It has been the starting point for
various numerical schemes such as Ritz, finite difference and finite element methods [2, 5].
In optimal control, it is used to obtain the differential equations and the terminal conditions
for optimal trajectory of a system [6, 7].

Although significant work has been done in the area of integer variational calculus,
very little has been done in the area of fractional variational calculus. Recently Riewe
[8, 9] developed Lagrangian, Hamiltonian and other concepts of classical mechanics for
nonconservative systems. Agrawal [10] presented a heuristic approach to obtain differential
equations of fractionally damped systems. Later, Agrawal [11] presented generalized Euler–
Lagrange equations for unconstrained and constrained fractional variational problems. Klimek
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presented a fractional sequential mechanics model with symmetric fractional derivatives [12]
and stationary conservation laws for fractional differential equations with variable coefficients
[13]. Dreisigmeyer and Young [14] presented nonconservative Lagrangian mechanics using a
generalized function approach. In [15] the authors show that obtaining differential equations
for a nonconservative system using fractional variational calculus may not be possible.

The fractional Euler–Lagrange equation has recently been used by Baleanu and co-workers
to model fractional Lagrangian and Hamiltonian formulations with linear velocities [16, 17]
and Hamiltonian equations for fractional variational problems [18]. Agrawal [19, 20] presented
formulations for deterministic and stochastic analyses of fractional optimal control problems.
Tarasov and Zaslavsky [21] have used variational Euler–Lagrange equations to derive fractional
generalization of the Ginzburg–Landau equation for fractal media. Stanislavsky [23] presented
a generalized formulation for fractional systems.

It should be noted that the integer variational calculus provides not only the Euler–
Lagrange equations but also the transversality conditions, which lead to natural boundary
conditions for the minimization of the associated functional [2, 3]. In contrast, the current
state of research in the field of fractional variational calculus is largely focused on obtaining
the Euler–Lagrange equations. Like in classical Lagrangian and Hamiltonian mechanics, the
necessary boundary conditions are taken from physical considerations. These conditions may
not lead to extremum of the functional. To the author’s knowledge, no attention has been
given to transversality and natural boundary conditions for fractional variational problems.
For boundary value problems, when sufficient kinematic boundary conditions are not specified,
the natural boundary conditions are necessary to solve a problem analytically. For fractional
variational problems, the transversality conditions and the natural boundary conditions are not
obvious.

The transversality conditions for fractional variational problems are expected to provide
additional information. It is well known that the solutions of the fractional differential
equations defined in terms of Riemann–Liouville require fractional initial conditions [22]. It
is believed by many that fractional initial conditions are not physical. Therefore, to overcome
this problem, the initial conditions are generally taken as zero. This belief may be largely due
to the fact that fractional derivatives have not been fully assimilated in science and engineering.
For example, note that under certain conditions, ∂1/2T/∂t1/2 represents heat flux at a boundary
of a 1D heat conduction problem. Here T and t represent temperature and time, respectively.
Heat flux is a well-accepted concept. Thus, fractional boundary conditions may be a reality.
Sometimes in engineering and physics, the phrase generalized force is used in an extended
sense of the definition to mean both force and moment. As discussed later, the transversality
conditions for fractional variational problem will allow us to extend the definition of many of
the physical terms even further.

It should be noted that the fractional differential equations defined in terms of the Caputo
derivatives require the regular boundary conditions. Therefore, one may presume that a
fractional variational problem defined in terms of the Caputo derivatives may not require
fractional initial conditions. As discussed below, this safe haven may not be so safe. The point
to be made here is that the fractional terminal conditions (like initial conditions for a dynamics
problem and the boundary conditions in mechanics) may be necessary to solve a fractional
calculus problem which has not been adopted in formulations and modelling of systems so
far. The transversality and natural boundary conditions derived here motivate us to include
the fractional boundary conditions in the formulations.

In this paper we develop the Euler–Lagrange equations and the transversality conditions
for fractional variational problems defined in terms of Riemann–Liouville and Caputo
derivatives. These transversality conditions suggest the appropriate boundary conditions to
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solve a fractional variational problem. It is demonstrated that fractional boundary conditions
may be necessary even when the problem is defined in terms of Caputo derivatives only.
The relationship between the boundary conditions arising from the transversality conditions
and those required by the Laplace transform technique is examined. Further, both fractional
derivatives (the Riemann–Liouville and the Caputo) may arise in the formulation, even when
the fractional variational problem is defined in terms of only one type of fractional derivative.

2. Fractional derivatives and their Laplace transforms

Several definitions have been proposed for a fractional derivative. We will deal with the
Riemann–Liouville and the Caputo fractional derivatives only. In this section, we present the
definitions of these two derivatives and their Laplace transforms. We also discuss the types
of boundary conditions that are necessary to solve a fractional differential equation. Most of
the equations presented in this section could be found with some minor notational changes in
[22, 24]. They are presented here for completeness and for ease in the discussion to follow.

We begin with the left Riemann–Liouville fractional integral of order α > 0 of a function
y(x) which is defined as [24]

0I
α
x y(x) = 1

�(α)

∫ x

0
(x − τ)α−1y(τ) dτ, x, α > 0, (1)

where �(∗) represents the Gamma function. This integral can be written as the Laplace
convolution between y(x) and �α(x) as

0I
α
x y(x) = �α(x) ∗ y(x) =

∫ x

0
�α(x − τ)y(τ ) dτ, (2)

where * is the convolution operator and the function �α(x) is defined as

�α(x) = 1

�(α)

{
0, x � 0
xα−1, x > 0.

(3)

Using (1) the left Riemann–Liouville derivative 0D
α
x y(x) and the left Caputo derivative

C
0 Dα

x y(x) of order α > 0 are given as

0D
α
x y(x) = Dn

0I
n−α
x y(x) = 1

�(n − α)

(
d

dx

)n ∫ x

0
(x − τ)n−α−1y(τ) dτ,

n − 1 < α < n, (4)

and

C
0D

α
x y(x) = 0I

n−α
x Dny(x) = 1

�(n − α)

∫ x

0
(x − τ)n−α−1

(
d

dτ

)n

y(τ ) dτ,

n − 1 < α < n, (5)

where D = d/dx represents the ordinary derivative and n is an integer. When α is an integer,
these derivatives represent the ordinary derivatives. The right fractional integral and the right
Riemann–Liouville and the right Caputo derivatives will be defined in the next section. It
should be pointed out that in the literature, the fractional integral, the Riemann–Liouville and
the Caputo derivatives generally mean the left fractional integral, the left Riemann–Liouville
and the left Caputo derivatives, respectively.

Using (1) to (5) and the properties of the convolution integral, the Laplace transforms of
0D

α
x y(x) and α

0 Dα
x y(x) are given as [24]

L
[

0D
α
x y(x)

] = sαY (s) −
n−1∑
k=0

Dk
0I

n−α
x y(0+)sn−1−k (6)
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and

L
[C

0D
α
x y(x)

] = sαY (s) −
n−1∑
k=0

Dky(0+)sα−1−k, (7)

where s is the Laplace parameter and Y (s) = L[y(x)] is the Laplace transform of y(x).
Note that the Laplace transform of 0D

α
x y(x) contains the fractional initial conditions whereas

the Laplace transform of C
0 Dα

x y(x) contains the regular initial conditions. Therefore, (6)
suggests that the solution of a linear fractional differential equation defined in terms of the
left Riemann–Liouville derivatives will require fractional initial conditions. On the other
hand, (7) suggests that the solution of a linear fractional differential equation defined in terms
of the left Caputo derivatives will require regular initial conditions. It will be shown that a
fractional variational problem may require fractional initial conditions even when the problem
is defined in terms of the left Caputo derivatives.

3. The generalized Euler–Lagrange equations and the transversality conditions

In this section, we present the generalized Euler–Lagrange equations and the transversality
conditions for fractional variational problems defined in terms of the Riemann–Liouville and
the Caputo derivatives. We begin with the right Riemann–Liouville fractional integral of order
α > 0 of a function y(x) which is defined as [24]

xI
α
1 y(x) = 1

�(α)

∫ 1

x

(τ − x)α−1y(τ) dτ, x, α > 0. (8)

For simplicity, we have taken the upper limit of the integral as 1. However, the upper
limit can be any value greater than x and less than infinity.

Using (8), the right Riemann–Liouville and the right Caputo fractional derivatives are
given, respectively, as

xD
α
1 y(x) = (−D)nxI

n−α
1 y(x) = 1

�(n − α)

(
− d

dx

)n ∫ 1

x

(τ − x)n−α−1y(τ) dτ,

n − 1 < α < n (9)

and

C
xD

α
1 y(x) = xI

n−α
1 (−D)ny(x) = 1

�(n − α)

∫ 1

x

(τ − x)n−α−1

(
− d

dτ

)n

y(τ ) dτ,

n − 1 < α < n. (10)

When α is an integer, these derivatives are replaced with (−D)α . It will be seen shortly that
these derivatives arise when the functionals to be minimized are defined in terms of the left
Riemann–Liouville and the left Caputo fractional derivatives.

We now consider the following fractional variational problem containing the left
Riemann–Liouville fractional derivative only. Among all possible functions y(x), find the
function y∗(x), which minimizes the functional

J [y] =
∫ 1

0
F

(
x, y, 0D

α
1 y

)
dx (11)

and satisfies the condition

y(0) = y0. (12)

This problem is the same as that considered in [11] with two exceptions. First, it does not
include the right Riemann–Liouville fractional derivative. This choice is made for simplicity.
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Second, in this problem, the boundary condition is specified only at x = 0 so that we can
develop the natural boundary condition. For simplicity, we also assume that 0 < α < 1 and
that all differentiability conditions are met. We further assume that the end points are specified.
Here, the function value is given at one end (x = 0) but free at the other end (x = 1). The
case where an end point lies on a prescribed curve will be considered in the future.

Using the approach presented in [11], it can be demonstrated that for J [y] to have an
extremum, the following conditions must be satisfied,∫ 1

0

[
∂F

∂y
+ C

xD
α
1

∂F

∂ 0Dα
x y

]
δy dx +

(
∂F

∂ 0Dα
x y

)
δ 0D

α−1
x y(x)

∣∣∣∣
1

0

= 0, (13)

where δ(∗) is the variation operator and 0D
α−1
x y(x) must be interpreted as the fractional

integral of order 1 − α. Since δy is arbitrary, it follows from a well-established result in
calculus of variations that [2]

∂F

∂y
+ C

xD
α
1

∂F

∂ 0Dα
x y

= 0, (14)

and (
∂F

∂ 0Dα
x y

)
δ 0D

α−1
x y(x) = 0, x = 0, 1. (15)

Equations (14) and (15) are the generalized Euler–Lagrange equation [11] and the
transversality conditions for the fractional variational problem defined in terms of the left
Riemann–Liouville fractional derivative. Equation (15) suggests that either(

∂F

∂ 0Dα
x y

)
= 0, x = 0, 1 (16)

or

δ 0D
α−1
x y(x) = 0, x = 0, 1, (17)

i.e. 0D
α−1
x y(x) at the end points should be specified. These boundary conditions are fractional

and they are similar to those required when the Laplace transform technique is used. Since y

at x = 1 is not specified, it follows that(
∂F

∂ 0Dα
x y

) ∣∣∣∣
x=1

= 0. (18)

Equation (18) is called the natural boundary conditions, and to obtain the optimum solution,
this condition must be satisfied. In many applications, the natural boundary conditions may
have some physical interpretations. One may then ask for a physical interpretation of (18).
However, this will depend on the physics of the problem. In the examples considered,
extensions of some physical definitions for the natural boundary conditions are given.

Note that (14) is somewhat different from that presented in [11]. It contains a Caputo
fractional derivative even when the functional in (11) contains no such term. This is because
some of the boundary conditions are not specified. Equation (11) can be written purely in
terms of the Riemann–Liouville fractional derivative. However, in that case, the resulting
equations will contain some extra terms.

We now consider the following fractional variational problem containing the left Caputo
fractional derivative. Among all possible curve y(x), find the curve y∗(x), which minimizes
the functional

J [y] =
∫ 1

0
F

(
x, y, C

0D
α
1 y

)
dx (19)
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and satisfies the initial condition given by (12). Once again, we assume that 0 < α < 1 and
that all differentiability conditions are met. We also assume that the end points are fixed. The
approach presented in [11] can be used with some minor changes for Caputo derivative to
obtain the optimality conditions for this case also. This leads to∫ 1

0

[
∂F

∂y
+ xD

α
1

∂F

∂ C
0D

α
x y

]
δy dx +

(
xD

α−1
1

∂F

∂ C
0D

α
x y

)
δy(x)

∣∣∣∣
1

0

= 0. (20)

Since δy is arbitrary, it follows from a well-established result in calculus of variations that [2]
∂F

∂y
+ xD

α
1

∂F

∂ C
0D

α
x y

= 0 (21)

and (
xD

α−1
1

∂F

∂ C
0D

α
x y

)
δy(x)

∣∣∣∣
1

0

= 0, x = 0, 1. (22)

Equations (21) and (22) are the generalized Euler–Lagrange equation [11] and the transversality
conditions for the fractional variational problem defined in terms of the left Caputo fractional
derivative. Note that (21) contains a right Riemann–Liouville fractional derivative even when
the functional does not contain any Riemann–Liouville fractional derivative term.

Equation (22) suggests that either(
0D

α−1
x

∂F

∂ C
0D

α
x y

)
= 0, x = 0, 1 (23)

or

δy(x)|10 = 0, x = 0, 1, (24)

i.e. y(x) at the end points should be specified. The boundary conditions resulting from (24)
are the kinematic boundary conditions. They have no fractional derivative terms, and thus
they are consistent with those required by the Laplace transform technique. Since y at x = 1
is not specified, it follows that(

xD
α−1
1

∂F

∂ C
0D

α
x y

) ∣∣∣∣
x=1

= 0. (25)

Equation (25) is called the natural boundary conditions and the optimum solution must satisfy
this condition. Note that this condition, in general, contains fractional derivative terms. Thus,
fractional variational problems defined in terms of Caputo fractional derivatives may require
imposition of fractional boundary conditions.

The forgoing formulations can be extended to functionals with higher order fractional
derivatives and multi-dimensional functions. In particular, if 1 < α < 2, then the transversality
conditions corresponding to the fractional variational problem defined by (11) and (12) are
given as (

∂F

∂ 0Dα
x y

)
δ 0D

α−1
x y(x) = 0, x = 0, 1 (26)

and (
D

∂F

∂ 0Dα
x y

)
δ 0D

α−2
x y(x) = 0, x = 0, 1 (27)

and the generalized Euler–Lagrange equation remains the same as in (14). Equations (26)
and (27) can be derived using the approach presented here and in [11]. For this reason, the
derivations of these equations are not presented here. These equations suggest that either(

∂F

∂ 0Dα
x y

)
= 0, x = 0, 1 (28)
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or 0D
α−1
x y(x) at x = 0 and 1 must be specified and either

(
D

∂F

∂ 0Dα
x y

)
= 0, x = 0, 1 (29)

or 0D
α−2
x y(x) at x = 0 and 1 must be specified. Equations (28) and (29) represent the natural

boundary conditions for the fractional variational problem defined in terms of Riemann–
Liouville fractional derivatives. Once again, 0D

α−2
x y(x) must be interpreted as a fractional

integral.
Following the above approach, for 1 < α < 2, the transversality conditions corresponding

to the fractional variational problem defined by (19) and (12) are given as
(

xD
α−2
1

∂F

∂ C
0D

α
x y

)
δDy(x) = 0, x = 0, 1 (30)

and (
xD

α−1
1

∂F

∂ C
0D

α
x y

)
δy(x) = 0, x = 0, 1, (31)

and the generalized Euler–Lagrange equation remains the same as in (21). Once again, we
omit the derivations of (30) and (31). These equations suggest that either

(
xD

α−2
1

∂F

∂ C
0D

α
x y

)
= 0, x = 0, 1 (32)

or Dy(x) at x = 0 and 1 must be specified and either
(

xD
α−1
1

∂F

∂ C
0D

α
x y

)
= 0, x = 0, 1 (33)

or y(x) at x = 0 and 1 must be specified. Equations (32) and (33) represent the natural
boundary conditions for fractional variational problem defined in terms of Caputo fractional
derivatives. Note that these equations may contain fractional derivative terms.

4. Illustrative examples

In this section, we consider two examples to show some applications of the transversality
conditions developed in the previous section.

4.1. Example 1

As a first example, consider the following functional:

J [y] = 1

2

∫ 1

0

[
ay2 +

(
0D

α
x y + y

)2]
dx (34)

and the following boundary condition:

y(0) = 1. (35)

We assume that 0 < α < 1. We will consider two cases.
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4.1.1. Case 1. Let a be 0. In this case, the minimum value of J [y] will be 0, if a function
could be found that satisfies (35) and the differential equation 0D

α
x y +y = 0. For this problem

the Euler–Lagrange equation and the transversality condition are

C
xD

α
1

(
0D

α
x y + y

)
+

(
0D

α
x y + y

) = 0 (36)

and (
0D

α
x y + y

) = 0, at x = 1, (37)

respectively. Applying the operator xI
α
1 on both sides of (36) and using (37), it can be

demonstrated that 0D
α
x y + y = 0 for 0 < x < 1, as expected. Note that the transversality

condition contains a fractional derivative term. Thus, a fractional boundary condition has been
used to solve the problem.

Let us examine (36) and (37) once again. If we define z = (
0D

α
x y + y

)
, then in terms

of z, the fractional boundary conditions for the problem defined by (36) and (37) completely
disappear. This z could be thought of as a mapping of y in some other space. This raises a
deep philosophical question: Is it that we have developed the law of physics in terms of the
mapped variables (in this example z) and have not realized the more fundamental variables (in
this example y)?

4.1.2. Case 2. This time, let a be 1. For this case, the Euler–Lagrange equation is

C
xD

α
1

(
0D

α
x y + y

)
+ y +

(
0D

α
x y + y

) = 0 (38)

and the transversality condition is given by (37). Solving (38) is not straightforward, and
perhaps its closed form solution does not exist. This problem is equivalent to the following
fractional optimal control problem [19]. Find the optimal control u that minimizes the
performance index

J [u] = 1

2

∫ 1

0
[y2 + u2] dx (39)

and satisfies the dynamic constraint

0D
α
x y = −y + u (40)

and the initial condition given by (35). This problem is solved in [19] using a numerical
technique. It is demonstrated that u(1) = 0. Using (37) and (40), it follows that this condition
is consistent with the transversality condition.

4.2. Example 2

As the second example, consider the functional

J [y] =
∫ 1

0

[
1

2

(
0D

α
x y

)2 − y

]
dx (41)

and the boundary condition

y(0) = y0. (42)

We will consider two cases for this example also.
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Table 1. Computed values of the natural boundary conditions.

N α = 0.6 α = 0.8 α = 0.9 α = 1

10 5.4720 × 10−2 2.0775 × 10−2 1.2801 × 10−2 7.8873 × 10−3

20 2.3818 × 10−2 6.8528 × 10−3 3.6758 × 10−3 1.9717 × 10−3

40 1.0367 × 10−2 2.2606 × 10−3 1.0556 × 10−3 4.9292 × 10−4

80 4.5126 × 10−3 7.4572 × 10−4 3.0314 × 10−4 1.2323 × 10−4

160 1.9642 × 10−3 2.4600 × 10−4 8.7055 × 10−5 3.0808 × 10−5

320 8.5499 × 10−4 8.1148 × 10−5 2.5000 × 10−5 7.7019 × 10−6

4.2.1. Case 1. Consider that 0 < α < 1. In this case, the Euler–Lagrange equation and the
natural boundary condition are

C
xD

α
1

(
0D

α
x y

) = 1 (43)

and (
0D

α
x y

)∣∣
x=1 = 0, (44)

respectively. This problem with α = 1 and y0 = 0 represents the problem of a uniformly
loaded bar fixed at one end and free at the other, and in which case the transversality condition
suggests that the strain at the free end should be zero. For linear materials, the stress and the
strain are linearly related. Therefore, for α = 1, (44) also suggests that stress or load at the
free end should be zero. If y is the displacement, then dy/dx is known as strain. We may
call it first-order strain. Following this, 0D

α
x y can be called α-order strain. For α = 1, it will

represent ordinary strain, and for α = 0, the displacement.
In [25], a finite element technique is developed to solve the problem defined by (41)

and (42) with y0 = 0. The domain of y(x) is discretized into several elements and the problem
is solved for various values of α. Table 1 shows the computed values of the natural boundary
condition for various αs and various levels of discretizations. It is clear that for each value of
α, as the number of discretizations is increased, the natural boundary conditions approach 0.
This is consistent with the theoretical results derived above.

4.2.2. Case 2. As a second case, consider that 1 < α < 2, and the following boundary
conditions

y(0) = Dy(0) = 0. (45)

For α = 2, this case represents a problem of a uniformly loaded cantilever beam subjected to
fixed boundary at one end and free boundary at the other end.

The Euler–Lagrange equation for this case is given by (41), and the natural boundary
conditions for this case are(

0D
α
x y

)∣∣
x=1 = D

(
0D

α
x y

)∣∣
x=1 = 0. (46)

For α = 2, these conditions reduce to

d2y

dx2
= d3y

dx3
= 0. (47)

If y is the deflection of the beam, then d2y/dx2 and d3y/dx3 represent the bending moment
and the shear force at the free end of the beam, respectively. Here, it is assumed that the
material constants are 1. Thus, (47) suggests that in the case of the cantilever problem,
the bending moment and the shear force at the free end must be 0. This is consistent with the
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classical results. In the extended sense of the definition, both d2y/dx2 and d3y/dx3 can be
called the generalized forces, where d2y/dx2 and d3y/dx3 will represent generalized forces
of orders 2 and 3, respectively. Following this, 0D

α
x y can be considered as the generalized

force of order α.
Note that if a fractional variational problem is defined in terms of Caputo derivatives, then

the natural boundary conditions may include Riemann–Liouville derivatives also. Solving
such problems analytically may be difficult, so a numerical technique may be necessary. This
will be considered in the future.

5. Conclusions

Generalized Euler–Lagrange equations and the transversality conditions have been presented
for fractional variational problems which were defined in terms of both the Riemann–Liouville
and the Caputo derivatives. It was demonstrated that both derivatives may appear in the
formulation even if the problem is defined in terms of one type of derivative only. The
transversality conditions gave the appropriate kinematic and natural boundary conditions.
The kinematic boundary conditions obtained from the transversality conditions agreed with
those required by the Laplace transform technique. It was demonstrated that the fractional
boundary conditions may be necessary to solve a fractional variational problem. The natural
boundary conditions may help us extend the definitions of many physical terms. Two examples
were presented to demonstrate the applications of the formulations presented above.
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